UCLA chemists have reported the key chemical discovery necessary for the creation of a small, electronic marijuana breathalyzer. The research is published in Organic Letters, a peer-reviewed journal of the American Chemical Society.

The legalization and decriminalization of marijuana in California and elsewhere have made marijuana detection especially important, said senior author Neil Garg, UCLA’s Kenneth N. Trueblood Professor of Chemistry and Biochemistry and chair of UCLA’s department of chemistry and biochemistry.

“When I grew up, people were taught not to drive drunk,” Garg said. “I haven’t seen the same type of messages for marijuana yet, and statistics indicate more than 14 million people in the U.S. smoke marijuana and drive. Our goal was to devise a very simple solution that could be adopted by society. We have shown in this study we can change the chemical structure and properties of THC — the primary psychoactive ingredient in marijuana — using perhaps the simplest chemical means possible: electricity, to determine whether a person is impaired.”

“We want a simple breathalyzer that doesn’t require specialized training because a police officer is not a trained synthetic organic chemist,” said lead author Evan Darzi, a former postdoctoral scholar in Garg’s laboratory.

While Darzi and Garg have developed the chemistry that would be at the heart of a marijuana breathalyzer, they have not created an actual device. “We have established the fundamental proof of concept,” said Garg, who received the 2018 Robert Foster Cherry Award — which is the largest university teaching prize in the U.S., awarded by Baylor University — and was named the 2015 California Professor of the Year.

Darzi and Garg developed a simple oxidation process similar to that used in an alcohol breathalyzer. Oxidation is the loss of an electron from a molecule. The researchers removed a hydrogen molecule from THC (whose full name is delta-9-tetrahydrocannabinol). Alcohol breathalyzers convert ethanol to an organic chemical compound, and hydrogen is lost through the oxidation process.

LEAVE A REPLY

Please enter your comment!
Please enter your name here